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Maxzimum Marks: 50

(1) Let f : R™ — R be a C*°-smooth function. Let ¢ € R be a reqular value for
f such that S = f~{q} # 0.
i) Prove that S is a smooth manifold of dimension n — 1
ii) Let p € S. Show that the tangent space T,S = KerD f(p).
iii) Calculate T,S™, where S™ C R+ is the standard unit sphere.
iv) Show that the tangent bundle of the sphere S™ C Rt is the set

iv
{(z,v) € S" x R"™ :< v,z >=0}.
where < .,. > is the standard inner product in R*1.
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ii) Let S be a submanifold of R™ of dimension k < n. Is it true that the Lie
bracket of any two vector fields of S is a vector field of S?

(2) i) Compute the Lie bracket [—ya({; +z 0
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Calculate fszw.
(10 marks)

(4) i) Calculate the Riemannian metric of S* induced from R3.

ii) Calculate the Levi-Civita connection of S with above mentioned Rie-
mannian metric.

ii) Calculate the curvature tensor in this case.
(20 marks)

Note: You can use well-known theorems taught in the class, but you need to write
precise statement of the theorem you are using.



