INDIAN STATISTICAL INSTITUTE, BANGALORE B. Math. III Second Semester Differential Geometry II: Final Exam

Duration: 3 hours

Date : May 08, 2015

Maximum Marks: 50

- (1) Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a \mathcal{C}^{∞} -smooth function. Let $q \in \mathbb{R}$ be a regular value for f such that $S = f^{-1}\{q\} \neq \emptyset$.
 - i) Prove that S is a smooth manifold of dimension n-1
 - ii) Let $p \in S$. Show that the tangent space $T_pS = KerDf(p)$.
 - iii) Calculate T_pS^n , where $S^n \subset \mathbb{R}^{n+1}$ is the standard unit sphere.
 - iv) Show that the tangent bundle of the sphere $S^n \subset \mathbb{R}^{n+1}$ is the set

$$\{(x, v) \in S^n \times \mathbb{R}^{n+1} : < v, x \ge 0\}.$$

where $\langle ., . \rangle$ is the standard inner product in \mathbb{R}^{n+1} .

(20 marks)

- (2) i) Compute the Lie bracket [-y∂/∂x + x∂/∂x, ∂/∂x] on ℝ².
 ii) Let S be a submanifold of ℝⁿ of dimension k < n. Is it true that the Lie
 - ii) Let S be a submanifold of ℝⁿ of dimension k < n. Is it true that the Lie bracket of any two vector fields of S is a vector field of S?

(10 marks)

(3) Let ω be the two form on $S^2 \subset \mathbb{R}^3$ given by

$$\omega = \begin{cases} \frac{dy \wedge dz}{x}, & x \neq 0\\ \frac{dz \wedge dx}{y}, & y \neq 0\\ \frac{dx \wedge dy}{z}, & z \neq 0. \end{cases}$$

Calculate $\int_{S^2} \omega$.

(10 marks)

- (4) i) Calculate the Riemannian metric of S^2 induced from \mathbb{R}^3 .
 - ii) Calculate the Levi-Civita connection of S^2 with above mentioned Riemannian metric.
 - ii) Calculate the curvature tensor in this case.

(20 marks)

Note: You can use well-known theorems taught in the class, but you need to write precise statement of the theorem you are using.